Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37765119

RESUMO

The promising therapeutic implications of nanoparticles have spurred their development for biomedical applications. An eco-friendly methodology synthesizes gold nanoparticles using Cordyceps militaris, an edible mushroom (Cord-Au-NPs), using a quality-by-design approach (central composite design). UV-visible spectroscopy analysis revealed an absorption peak at 540-550 nm, thus confirming the synthesis of gold nanoparticles. Cord-Au-NPs have a crystalline structure, as evidenced by the diffraction peaks. The zeta potential value of -19.42 mV signifies the stability of Cord-Au-NPs. XRD study shows gold facets and EDX analysis revealed a strong peak of spherical nanoparticles in the gold region with a mean particle size of 7.18 nm and a polydispersity index of 0.096. The obtained peaks are closely associated with phenolic groups, lipids, and proteins, as examined by FTIR, suggesting that they function as the reducing agent. Cord-Au-NPs exhibited dose-dependent antioxidant, antidiabetic, and antibacterial activity. The method is eco-friendly, nontoxic, less time-consuming, and does not use synthetic materials, leading to higher capabilities in biomedical applications.

2.
Environ Res ; 234: 116609, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437861

RESUMO

The present research demonstrates the formation of zinc oxide nanoparticles facilitated by Cissus quadrangularis (CQ-ZnONPs) and subsequent synthesis of chitosan-conjugated nanocomposites (CQ-CS/ZnONCs) along with their biological assessment. The biosynthesized nanoparticles and nanocomposites were physicochemically characterized and therapeutically assessed for their antioxidant, antibacterial, and antidiabetic potential. The formation of CQ-ZnONPs and CQ-CS/ZnONCs was preliminarily validated by the change in color and subsequently by UV-visible spectroscopic analysis. The crystalline peaks associated with the CQ-ZnONPs in CQ-CS/ZnONCs were established by XRD analysis. Morphological evaluation of CQ-ZnONPs and CQ-CS/ZnONCs was carried out through FE-SEM and HRTEM studies. The particle size of the CQ-ZnONPs and CQ-CS/ZnONCs was 243.3 nm and 176.6 nm, with a PDI of 0.188 and 0.199, respectively. Nanoparticles and nanocomposites expressed Zeta potential of -15.7 mV and -16.2 mV, respectively. The CQ-ZnONPs and CQ-CS/ZnONCs showed good radical effectiveness with various in-vitro assays. The formulated nanoparticles and nanocomposites displayed significant antibacterial activity against the selected bacterial pathogens. CQ-CS/ZnONCs presented noteworthy α-amylase and α-glucosidase inhibitory effects compared to CQ-ZnONPs with IC50 of 73.66 ± 1.21 µg/mL and 87.59 ± 1.29 µg/mL, respectively. Moreover, the synthesized CQ-CS/ZnONCs demonstrated 98.92 ± 0.39% and 99.58 ± 0.16% wound contraction (at 7 and 14 mg, respectively), significantly (p < 0.05) higher than the standard and CQ-ZnONPs. Thus, the CQ-ZnONPs and CQ-CS/ZnONCs could effectively develop promising drug delivery systems to inhibit pathogens and chronic tissue repair.


Assuntos
Quitosana , Nanopartículas Metálicas , Nanocompostos , Nanopartículas , Óxido de Zinco , Quitosana/química , Nanopartículas Metálicas/química , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes , Óxido de Zinco/química , Nanocompostos/química
3.
Int J Biol Macromol ; 242(Pt 1): 124764, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148929

RESUMO

The present research work aimed at synthesizing chitosan-coated Zinc oxide nanocomposites (NS-CS/ZnONCs) by a bio-inspired method using an aqueous extract of Nigella sativa (NS) seeds and employing a quality-by-design approach (Box-Behnken design). The biosynthesized NS-CS/ZnONCs were physicochemically characterized and subjected to their in-vitro and in-vivo therapeutic potential. The zeta potential value of -11.2 mV and -12.6 mV indicated the stability of NS-mediated synthesized zinc oxide nanoparticles (NS-ZnONPs) and NS-CS/ZnONCs, respectively. The particle size of NS-ZnONPs and NS-CS/ZnONCs were 288.1 nm and 130.2 nm, respectively, with PDI of 0.198 and 0.158. NS-ZnONPs and NS-CS/ZnONCs showed superior radical scavenging abilities, excellent α-amylase, and α-glucosidase inhibitory activities. Also, NS-ZnONPs and NS-CS/ZnONCs demonstrated effective antibacterial activity against selected pathogens. Furthermore, NS-ZnONPs and NS-CS/ZnONCs demonstrated significant (p < 0.001) wound closure with 93.00 ± 0.43 % and 95.67 ± 0.43 % on the 15th day of treatment at the dose of 14 mg/wound, compared to 93.42 ± 0.58 % of standard. Collagen turnover was represented by hydroxyproline, which was shown to be significantly (p < 0.001) higher in the NS-ZnONPs (60.70 ± 1.44 mg/g of tissue) and NS-CS/ZnONCs (66.10 ± 1.23 mg/g of tissue) treatment groups than in the control group (47.7 ± 0.81 mg/g of tissue). Thus the NS-ZnONPs and NS-CS/ZnONCs could effectively develop promising drugs to inhibit pathogens and chronic tissue repair.


Assuntos
Quitosana , Nanocompostos , Óxido de Zinco , Quitosana/química , Antioxidantes/farmacologia , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanocompostos/química
4.
AAPS PharmSciTech ; 24(5): 106, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085596

RESUMO

Simvastatin (SMV) is noticed as a repurposed candidate to be effective against breast cancer (BC). However, poor solubility, dose-limiting toxicities, and side effects are critical hurdles in its use against BC. The above drawbacks necessitate the site-specific (localized) delivery of SMV via suitable nanocarriers. Therefore, the present study intended to develop SMV nanostructured lipid carrier (NLC)-based gel using carbopol-934 as a gelling agent to achieve local delivery and improve patient compliance while combating BC. The SMV NLCs were fabricated by melt-emulsification ultrasonication technique using stearic acid as solid lipid, olive oil (OO) as liquid lipid, tween 20 as a surfactant, and PEG-200 as a co-surfactant, and optimized by Box-Behnken design. The optimized SMV-loaded NLCs displayed % entrapment efficiency of 91.66 ± 5.2% and particle size of 182 ± 11.9 nm. The pH of NLC-based gels prepared using a 2.0% w/v of carbopol-934 was found in the range of 5.3-5.6 while the viscosity was in the range of 5.1-6.6 Pa.S. Besides, NLC-based gels exhibited higher and controlled SMV release (71-76%) at pH 6.8 and (78-84%) at pH 5.5 after 48 h than SMV conventional gel (37%) at both pH 6.8 and 5.5 after 48 h. The ex vivo permeation of SMV from NLC-based gel was 3.8 to 4.5 times more than conventional gel. Notably, SMV-loaded NLCs displayed ameliorated cytotoxicity than plain SMV against MCF-7 and MDA-MB-231 BC cells. No substantial difference was noticed in the cytotoxicity of NLC-based gels and pure SMV against both cell lines. The SMV NLC-based gel exhibited the absence of skin irritation in vivo in the mice following topical application. In addition, the histopathological study revealed no alteration in the mice skin anatomy. Furthermore, the SMV-loaded NLCs and NLC-based gels were stable for 6 months at refrigerator conditions (4°C ± 2°C). Thus, the present research confirms that NLC-based gel can be a safe, efficacious, and novel alternative to treat BC.


Assuntos
Nanoestruturas , Neoplasias , Camundongos , Animais , Portadores de Fármacos/química , Nanoestruturas/química , Géis/química , Excipientes , Tensoativos , Lipídeos/química , Tamanho da Partícula
5.
Materials (Basel) ; 16(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36769895

RESUMO

In the present investigation, a one-step hydrothermal approach is proposed to synthesize Li+, Rb+, and In3+intercalated PW12O40 (PTA) thin films. The photoelectrochemical performance of the deposited Li3PW12O40 (Li-PTA), Rb3PW12O40 (Rb-PTA), and In3PW12O40 (In-PTA) photocathodes were investigated using a two-electrode cell configuration of FTO/Li3PW12O40/(0.1 M I-/I3-)aq./Graphite. The energy band gaps of 2.24, 2.11, and 2.13 eV were observed for the Li-PTA, Rb-PTA, and In-PTA films, respectively, as a function of Li+, Rb+, and In3+. The evolution of the spinal cubic crystal structure with increased crystallite size was observed for Rb+ intercalation within the PTA Keggin structure, which was confirmed by X-ray diffraction (XRD). Scanning electron microscopy (SEM) revealed a modification in the surface morphology from a rod-like structure to a densely packed, uniform, and interconnected microsphere to small and large-sized microspheres for Li-PTA, Rb-PTA, and In-PTA, respectively. Compositional studies confirmed that the composing elements of Li, Rb, In, P, W, and O ions are well in accordance with their arrangement for Li+, Rb+, In3+, P5+, W6+, and O2- valence states. Furthermore, the J-V performance of the deposited photocathode shows power conversion efficiencies (PCE) of 1.25%, 3.03%, and 1.62%, as a function of the incorporation of Li+, Rb+, and In3+ ions. This work offers a one-step hydrothermal approach that is a prominent way to develop Li+, Rb+, and In3+ ions intercalated PTA, i.e., Li3PW12O40, Rb3PW12O40, and In3PW12O40 photocathodes for competent solar energy harvesting.

6.
PLoS One ; 17(11): e0274916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36327264

RESUMO

The present study intends to formulate, characterize and appraise the phospholipid-based nanovesicular system for enhanced delivery of Hesperetin (HT). The quality by design (QbD) approach was employed to prepare Hesperetin naturosomes (HTN) using the solvent evaporation technique and assessed for physicochemical and pharmacological attributes. The FTIR, DSC, and PXRD studies confirmed the successful formation of a vesicular drug-phospholipid complex, while photomicroscopy, SEM, and TEM analysis revealed the morphology of HTN. The functional attributes substantially enhanced the HT's aqueous solubility, drug release, and membrane permeation. The aqueous solubility of HTN was ~10-fold more than that of pure HT. Likewise, the in-vitro dissolution data of HTN showed better competence in releasing the HT (>93%) than the pure HT (~64%) or the physical mixture (~74%). Furthermore, HTN significantly altered HT permeation (>53%) when compared to pure HT (23%) or the physical mixture (28%). The current study showed that naturosomes are a promising way to improve the solubility in water, bioavailability, and therapeutic effectiveness of drugs.


Assuntos
Fosfolipídeos , Água , Solubilidade , Disponibilidade Biológica , Liberação Controlada de Fármacos , Fosfolipídeos/química , Água/química
7.
Int J Pharm ; 628: 122287, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36257467

RESUMO

The present investigation deals with the pazopanib-loaded solid lipid nanoparticles (Pazo-SLNs) and their in-vitro and in-vivo assessments. Quality by design approach employing the Plackett-Burman and central composite design was used to identify the formulation variables, including drug/lipid ratio, organic/aqueous phase ratio, and surfactant concentration with a significant impact on the process and to fabricate a safe and efficacious novel oral dosage form of pazopanib. Particle size, drug loading, entrapment efficiency, and zeta potential of optimal Pazo-SLNs formulation were 210.03 ± 7.68 nm, 13.35 ± 0.95 %, 79.05 ± 2.55 % and -18.29 ± 1.89 mV (n = 3) respectively. FTIR study affirmed the absence of incompatibilities between the drug and the excipients. DSC and XRD measurements substantiated the amorphous form of pazopanib entrapped within the SLNs. Pazo-SLNs demonstrated high cellular uptake, showed substantial cytotoxicity to A-549 lung cancer cells due to apoptotic mode and inhibited tyrosine kinase in-vitro. Pazo-SLNs were found to be stable for three months. SLNs greatly ameliorated the pharmacokinetic behavior and bioavailability (9.5 folds) of pazopanib with a sustained-release pattern (92.67 ± 4.68 % within 24 h). A biodistribution study corroborated the lung targeting potential of Pazo-SLNs. Thus, SLNs could potentially boost the oral route efficacy of pazopanib against cancer cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Humanos , Disponibilidade Biológica , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Lipídeos , Distribuição Tecidual , Neoplasias Pulmonares/tratamento farmacológico , Tamanho da Partícula , Excipientes , Portadores de Fármacos
8.
J Funct Biomater ; 13(4)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36278627

RESUMO

Oral cancer has a high mortality rate, which is mostly determined by the stage of the disease at the time of admission. Around half of all patients with oral cancer report with advanced illness. Hitherto, chemotherapy is preferred to treat oral cancer, but the emergence of resistance to anti-cancer drugs is likely to occur after a sequence of treatments. Curcumin is renowned for its anticancer potential but its marred water solubility and poor bioavailability limit its use in treating multidrug-resistant cancers. As part of this investigation, we prepared and characterized Curcumin nanomicelles (CUR-NMs) using DSPE-PEG-2000 and evaluated the anticancer properties of cisplatin-resistant cancer cell lines. The prepared CUR-NMs were sphere-shaped and unilamellar in structure, with a size of 32.60 ± 4.2 nm. CUR-NMs exhibited high entrapment efficiency (82.2%), entrapment content (147.96 µg/mL), and a mean zeta potential of -17.5ζ which is considered moderately stable. The cellular uptake and cytotoxicity studies revealed that CUR-NMs had significantly higher cytotoxicity and cellular uptake in cisplatin drug-resistant oral cancer cell lines and parental oral cancer cells compared to plain curcumin (CUR). The DAPI and FACS analysis corroborated a high percentage of apoptotic cells with CUR-NMs (31.14%) compared to neat CUR (19.72%) treatment. Conclusively, CUR-NMs can potentially be used as an alternative carrier system to improve the therapeutic effects of curcumin in the treatment of cisplatin-resistant human oral cancer.

9.
J Control Release ; 349: 812-830, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914614

RESUMO

Breast cancer (BC) is a highly diagnosed and topmost cause of death in females worldwide. Drug repurposing (DR) has shown great potential against BC by overcoming major shortcomings of approved anticancer therapeutics. However, poor physicochemical properties, pharmacokinetic performance, stability, non-selectivity to tumors, and side effects are severe hurdles in repurposed drug delivery against BC. The variety of nanocarriers (NCs) has shown great promise in delivering repurposed therapeutics for effective treatment of BC via improving solubility, stability, tumor selectivity and reducing toxicity. Besides, delivering repurposed cargos via theranostic NCs can be helpful in the quick diagnosis and treatment of BC. Localized delivery of repurposed candidates through apt NCs can diminish the systemic side effects and improve anti-tumor effectiveness. However, breast tumor variability and tumor microenvironment have created several challenges to nanoparticulate delivery of repurposed cargos. This review focuses on DR as an ingenious strategy to treat BC and circumvent the drawbacks of approved anticancer therapeutics. Various nanoparticulate avenues delivering repurposed therapeutics, including non-oncology cargos and vaccines to target BC effectively, are discussed along with case studies. Moreover, clinical trial information on repurposed medications and vaccines for the treatment of BC is covered along with various obstacles in nanoparticulate drug delivery against cancer that have been so far identified. In a nutshell, DR and drug delivery of repurposed drugs via NCs appears to be a propitious approach in devastating BC.


Assuntos
Neoplasias da Mama , Vacinas , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Reposicionamento de Medicamentos , Feminino , Humanos , Preparações Farmacêuticas , Microambiente Tumoral , Vacinas/uso terapêutico
10.
Artigo em Inglês | MEDLINE | ID: mdl-34281099

RESUMO

Background-chlorhexidine (CHX) is most commonly used as a chemical plaque control agent. Nevertheless, its adverse effects, including teeth discoloration, taste alteration and calculus build-up, limit its use and divert us to medicinal herbs. The purpose of the study was to evaluate the phytochemical composition, antioxidant potential, and cytotoxic effects of Mimusops elengi Linn extract (ME) over normal human cultured adult gingival fibroblasts (HGFs). Methods-in vitro phytochemical screening, total flavonoid content, antioxidant potential by DPPH and Nitric Oxide (NO) radical scavenging activity, and cytotoxic effects of ME extracts over HGF were explored. The viability of HGF cells was determined using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT), neutral red uptake, and trypan blue assay after treatment with different concentrations of CHX and ME (0.3125 to 10 µg/mL). Results-ME showed some alkaloids, glycosides, saponins and flavonoids exhibited relatively moderate-to-good antioxidant potential. Increasing the concentration of CHX and ME from 0.3125 to 10 µg/mL reduced cell viability from 29.71% to 1.07% and 96.12% to 56.02%, respectively. At higher concentrations, CHX reduced the viability of cells by 52.36-fold compared to ME, revealed by MTT assay. At 10 µg/mL concentration, the mean cell viability of CHX and ME-treated cells was 2.24% and 57.45%, respectively, revealed by a neutral red assay. The viability of CHX- and ME-treated HGF cells estimated at higher concentrations (10 µg/mL) using trypan blue assay was found to be 2.18% and 47.36%, respectively. A paired t-test showed significance (p < 0.05), and one-way ANOVA difference between the mean cell viability of CHX- and ME-treated cells at different concentrations. One-way ANOVA confirmed the significant difference between the viability of CHX- and ME-treated cells. Conclusions-The cytoprotective and antioxidant effects of ME emphasize its potential benefits. Therefore, it could emerge as a herbal alternative and adjunct to conventional oral hygiene methods, that can diminish periodontal tissue destruction.


Assuntos
Antioxidantes , Mimusops , Adulto , Antioxidantes/farmacologia , Clorexidina , Fibroblastos , Humanos , Extratos Vegetais/toxicidade
11.
J Pharm Sci ; 110(1): 280-291, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33069713

RESUMO

In this investigation, the fabrication of capsaicin loaded self nano emulsifying drug delivery system (SNEDDS) was attempted to improve the effectiveness of capsaicin through the oral route. A pseudo-ternary phase diagram was constructed at different km values (1:1, 2:1, & 3:1). Nine liquid formulations (L-CAP-1 to L-CAP-9) were prepared at km = 3, evaluated & converted to solid free-flowing granules using neusilin® US2. L-CAP-3 comprising of 15% isopropyl myristate, 33.75% Labrafil, & 11.25% ethanol exhibited higher % transmittance (98.90 ± 1.24%) & lower self-emulsification time (18.19 ± 0.46 s). FT-IR spectra showed no incompatibility whereas virtual analysis confirmed hydrogen bond interaction between amino hydrogen in the capsaicin & oxygen of the neusilin. DSC & XRD study revealed the amorphization & molecular dispersion of capsaicin in S-SNEDDS. TEM analysis confirmed the nano-sized spherical globules. Within 15 min, L-SNEDDS, S-SNEDDS, & pure capsaicin showed 87.36 ± 3.25%, 85.19 ± 4.87%, & 16.61 ± 3.64% drug release respectively. S-CAP-3 significantly (P < 0.001) inhibited the proliferation of HT-29 colorectal cancer cells than capsaicin. Apoptosis assay involving Annexin V/PI staining for S-CAP-3 treated cells demonstrated a significant (P < 0.001) apoptotic rate. Remarkably, 3.6 fold increase in bioavailability was observed after oral administration of capsaicin-SNEDDS than plain capsaicin.


Assuntos
Capsaicina , Nanopartículas , Administração Oral , Animais , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Emulsões , Tamanho da Partícula , Ratos , Ratos Wistar , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Int J Biol Macromol ; 167: 345-357, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33253744

RESUMO

In this study, a novel Vigna radiata based porous starch (PS) is prepared by solvent exchange technique and explored as a solubilizer for model drug albendazole (ABZ). PS carrier was investigated for different chemical, functional, and micromeritic properties. Solubilizing potential of PS is evaluated by formulating ABZ-PS solid dispersion (1:0.5-1:2) based tablets (SDT). ABZ-PS solid dispersions were evaluated for micromeritic properties, dissolution studies, and anthelmintic activity. Direct compression suitability and susceptibility of mung bean starch were studied by SeDem diagram, Heckel, and Kawakita analysis respectively. PS had an A-type crystallinity pattern and evinced functional properties similar to other legume starches. PS was determined to be suitable for direct compression (good compressibility index = 5.50). SD (1:2) manifested 36.18 fold and 1.6-3.04 fold improvement in the % dissolution and anthelmintic activity of ABZ respectively. All SD batches (R2 = 0.949-0.996) and ABZ (R2 = 0.168) followed the Higuchi-matrix release kinetic model. DSC and P-XRD analysis corroborated the amorphous form of ABZ. SDT showed ≈ a 1.90 fold improvement in dissolution rate than the marketed formulation. Conclusively, Vigna radiata PS could be explored as an alternative to reduce the large burden on the established starches.


Assuntos
Portadores de Fármacos/química , Amido/química , Vigna/química , Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Varredura Diferencial de Calorimetria , Liberação Controlada de Fármacos , Óleos/química , Tamanho da Partícula , Porosidade , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Comprimidos/química , Viscosidade , Água , Difração de Raios X
13.
Curr Drug Deliv ; 17(7): 599-612, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32394839

RESUMO

BACKGROUND: Screening of multiple methods is worthless for formulators due to material losses, wastage of time, and expenditures. It is imperative to make a quick decision. OBJECTIVE: The present investigation describes the systematic approach to select the best suitable method for the development of nanoliposomes (NL), the precursor of nanocochleates encapsulating curcumin using Analytic Hierarchy Process (AHP). METHODS: Pair-wise comparison matrices were used to achieve the overall priority weight and ranking for the selection of appropriate technique. Furthermore, Plackett-Burman screening Design (PBD) was exploited to investigate specific effects of associated formulation and process variables on particle size (Y1), drug content (Y2), and entrapment efficiency (Y3), while fabricating NL. RESULTS: Results revealed the reliability of the pair-wise comparison matrices and selected the ethanol injection method with the highest priority weight (0.337). Bland-Altman plot and control chart validated the results of AHP. The preparation of vesicles with the preferred diameter and size distribution was essentially fulfilled. Stirring speed (X5), amount of phospholipid (X4), and cholesterol (X8) showed significant influence (p<0.05;) on Y1 and Y3, PBD revealed. These factors can be further optimized using the design of experiments. CONCLUSION: AHP being an effective tool, has assisted in selecting the best alternative for fabricating NL, whilst PBD enabled a clear understanding of the effects of diverse formulation variables on responses studied. Results ensure that NL is a riveting candidate for modulating effectively into tailormade diverse shaped nanoformulations for further in vitro; and in vivo; studies.


Assuntos
Desenvolvimento de Medicamentos/métodos , Heurística , Nanopartículas/química , Compostos Fitoquímicos/administração & dosagem , Algoritmos , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Lipossomos , Tamanho da Partícula , Compostos Fitoquímicos/farmacocinética , Reprodutibilidade dos Testes
14.
Acta Chim Slov ; 67(4): 1100-1110, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33533459

RESUMO

A reliable RP-HPLC analytical method with UV detection at 421 nm was developed and validated for the quantitative determination of curcumin from rat plasma after oral administration of curcumin loaded nanocochleates (CU-NC) to rats. The chromatographic separation was performed on HIQ SIL, C18 (250 mm × 4.6 mm) column using methanol and water (80:20 v/v) as mobile phase, at 1.0 mL/min flow rate. Validation parameters included linearity, accuracy, precision, and limit of quantitation and detection. Good linearity was obtained over the range of 2.5-100 µg/mL (R2 = 0.9979) of curcumin. The developed HPLC method was precise, with <2% relative standard deviation. Accuracy, stability, and robustness studies were also found to be acceptable. Bland-Altman plot showed an acceptable repeatability coefficient. The method was under statistical control, revealed by a control chart. After CU-NC administration, pharmacokinetic parameters i.e. Cmax, AUC0-?, and AUMC0-?, were observed to be 97.69±10.84 µg/mL, 1402.77±9.67 (µg/mL)×h, and 35140.16±14.67 (µg/mL)×h2, respectively. This simple and precise method can be effectively implemented for routine analysis.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Curcumina/análise , Curcumina/farmacocinética , Animais , Limite de Detecção , Ratos Wistar
15.
Carbohydr Polym ; 229: 115357, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31826453

RESUMO

The study was initiated with the intent to synthesize acrylamide grafted neem gum polymer (AAm-g-NG), and screen its drug release retardation ability both in vitro and in vivo. Different batches (NGP-1 to NGP-9) of tablet formulation were prepared by varying polymer concentration using propranolol HCl and compared with HPMC K100 M and marketed SR tablets. FTIR study proved the grafting phenomenon and showed no incompatibility between AAm-g-NG and propranolol HCl. AAm-g-NG showed significant swelling and water retention capacity than NG. AAm-g-NG was found to be biodegradable and exhibited no toxicity to Artemia salina. After 12 h, NGP-6 showed non-significant (p > 0.05; f2= ∼ 90) percent drug release (80.52 ±â€¯3.41%) compare to marketed formulation (79.65 ±â€¯4.08%). Significant swelling of the matrix caused slower diffusion of the drug. NGP-6 and marketed formulation in rabbits showed the non-significant difference between Cmax and Tmax, hence NGP-6 meets the requirement of sustained-release tablets.


Assuntos
Acrilamida , Azadirachta , Gomas Vegetais , Acrilamida/química , Acrilamida/farmacocinética , Acrilamida/toxicidade , Animais , Artemia/efeitos dos fármacos , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/toxicidade , Liberação Controlada de Fármacos , Gomas Vegetais/química , Gomas Vegetais/farmacocinética , Gomas Vegetais/toxicidade , Coelhos , Comprimidos
16.
Recent Pat Drug Deliv Formul ; 11(3): 173-186, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29165100

RESUMO

BACKGROUND: The quest to improve the therapeutic effectiveness of herbal drugs has driven the pharmaceutical research towards the development of herbal nanoparticles. OBJECTIVE: Till date, various approaches have been adopted for the design of herbal nanoparticles. METHODS: We carried out an organized search of bibliographic databases consisting of an ample number of published abstracts and research articles using a focused review questionaries and insertion/ omission criteria. The study was systematically structured to review various phytochemicals formulated as nanoparticles, understand its need and prospects. Indeed, research cited has revealed revival of some phytochemicals with therapeutic efficacy fronts. RESULTS: Certain patents (US20170157005A1, US20160228362A1 and US20150050357A1) have evinced entrapment concerns of phytoceuticals into nanoparticles. Amongst various phytochemicals, Curcumin, Quercetin, Silymarin, Paclitaxel etc. seems predominant ones being successfully formulated as nanoparticles. The reason for the availability of their splendid formulations lies in the addresal of poor stability, poor water solubility and consequently poor bioavailability. CONCLUSION: If bioavailability constraint is overcome, diseases like cancer, Alzheimer's, diabetes, liver disorder etc. can be effectively targeted. By doing so, the largely affected society, will breathe the relief. The present article is an attempt to elaborate and conclude on how nanoparticles have been serving as a tool to enhance the effectiveness of phytochemicals, by solubilization, dissolution and consequent bioavailability enhancements, along with in vivo targeting. To further facilitate understanding, the review discusses disease/disorder and phytochemicals with focus on their nanoparticles.


Assuntos
Nanopartículas , Patentes como Assunto , Compostos Fitoquímicos/administração & dosagem , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Humanos , Compostos Fitoquímicos/farmacocinética , Compostos Fitoquímicos/uso terapêutico
17.
AAPS PharmSciTech ; 16(3): 716-29, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25523143

RESUMO

In the present work, an attempt has been made to screen Prosopis africana seed gum (PG), anionic polymer for extended release tablet formulation. Different categories of drugs (charge basis) like diclofenac sodium (DS), chlorpheniramine maleate (CPM), and ibuprofen (IB) were compacted with PG and compared with different polymers (charge basis) like xanthan gum (XG), hydroxypropyl methyl cellulose (HPMC-K100M), and chitosan (CP). For each drug, 12 batches of tablets were prepared by wet granulation technique, and granules were evaluated for flow properties, compressibility, and compactibility by Heckel and Leuenberger analysis, swelling index, in vitro dissolution studies, etc. It has been observed that granules of all batches showed acceptable flowability. According to Heckel and Leuenberger analysis, granules of PG-containing compacts showed similar and satisfactory compressibility and compactibility compared to granules of other polymers. PG showed significant swelling (P < 0.05) compared to HPMC, and better than CP and XG. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) study showed no interaction between drugs and polymers. From all PG-containing compacts of aforesaid drugs, drug release was sustained for 12 h following anomalous transport. Especially, polyelectrolyte complex formation retarded the release of oppositely charged drug (CPM-PG). However, extended release was noted in both anionic (DS) and nonionic (IB) drugs, maybe due to swollen gel. All compacts were found to be stable for 3-month period during stability study. This concludes that swelling and release retardation of PG has close resemblance to HPMC, so it can be used as extended release polymer for all types of drugs.


Assuntos
Preparações de Ação Retardada/química , Gomas Vegetais/química , Polímeros/química , Prosopis/química , Sementes/química , Comprimidos/química , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Quitosana/química , Clorfeniramina/química , Diclofenaco/química , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Derivados da Hipromelose/química , Ibuprofeno/química , Polissacarídeos Bacterianos/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos
18.
Int J Pharm Investig ; 4(4): 215-25, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25426443

RESUMO

INTRODUCTION: Present work, is an effort toward exploring the potential of Cassia fistula Linn. seed gum as an extended release polymer and laxative. While, C. fistula pulp polymer has evaluated as suspending agent. MATERIALS AND METHODS: For extended release application, total five batches (F1-F5) were prepared by varying the ratio of drug:polymer as 1:1, 1:2, 1:3, 1:4, and 1:5, respectively. The granules were prepared by wet granulation method and further evaluated for micromeritic properties such as angle of repose (θ), Carr's compressibility index (CCI), and Hausner's ratio. Further compacts were evaluated by hardness, thickness, swelling index, in-vitro dissolution, and so on. Laxative activity was evaluated by administration of seed polymer (100 mg/kg) alone or in combination with bisacodyl (2.5 mg/kg) in 1% Tween 80. Zinc oxide suspension was prepared by varying the concentration of C. fistula pulp polymer and compared with suspension made by use of tragacanth, sodium carboxymethyl cellulose and bentonite. RESULTS: Result showed that granules were free flowing, while the compact extended the drug release up to 10 h (72.84 ± 0.98; batch F5) and followed Higuchi matrix release kinetics. This extended release might be due to the formation of polyelectrolyte complex because of gluco-mannose in seed gum. Result of in-vivo laxative activity showed that seed polymer reduced faeces weight after 24 h compared to control (P < 0.01). CONCLUSIONS: Pulp polymer showed good sedimentation volume, but alone fails to stabilize the suspension for a longer period, so it could be useful in combination with other suspending agents and can be useful as novel excipient.

19.
Asian Pac J Trop Med ; 7S1: S560-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25312184

RESUMO

OBJECTIVE: To develop and validate a simple, accurate and precise colorimetric method using Bougainvillea spectabilis (B. spectabilis) bract color previously not exploited for estimation of amide group containing drugs i.e. lidocaine and ranolazine in pharmaceutical formulations. METHODS: Methanolic extract of B. spectabilis was prepared and evaluated for stability of its color at different pH and temperature for a period of 3 weeks. The accuracy and reliability of the proposed method was ascertained by evaluating various validation parameters like linearity, precision, limit of detection, limit of quantitation and specificity according to International Conference on Harmonization guidelines. About 0.5% of B. spectabilis bract color was added to the working standard solutions of the drugs separately and after formation of color complex, and absorbances were noted at 418 nm. RESULTS: For color complexes of lidocaine and ranolazine, linearity was found to be in the range of 4 to 24 and 5 to 25 µg/mL respectively. The % relative standard deviation was found to be within specification limits. Presence of lone pair of electron on nitrogen of amide group of both drugs shows basic nature, contributed in formation of color complex between amide and the color pigment obtained from B. spectabilis bracts. CONCLUSIONS: It can be concluded that the method is simple, accurate, economic, and rapid hence can be employed for routine analysis.

20.
Int J Pharm Investig ; 3(3): 126-30, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24167784

RESUMO

INTRODUCTION: The present work was aimed at development and evaluation of zidovudin (AZT) loaded gelatin nanoparticles (GNPs) by simple desolvation method and further couple it with mannose. MATERIAL AND METHODS: Total seven batches of GNPs (A1-A7) were formulated by changing the concentration of polymer gelatin. Various parameters such as particle size, polydispersity index, zeta potential, % entrapment efficiency and in-vitro drug release of plain and mannosylated gelatin nanoparticles (M-GNPs) were studied. RESULTS: Scanning electron microscopy (SEM) studies revealed that the average particle size of GNPs and M-GNPs were found to be 394 ± 3.21 and 797.2 ± 2.89 nm respectively (optimised batch A3). It was interesting to note that the average particle size of M-GNPs was more due to anchored mannose, whereas drug entrapment was lesser compared to plain GNPs. Studies have showed drug loading for GNPs and M-GNPs to be 66.56% and 58.85% respectively. Zeta potential studies demonstrated little reduction in solution stability of M-GNPs compared to GNPs. In-vitro drug release studies showed almost 80% release (bimodal) up to 24 h, following Korsmeyer-Peppas release kinetics model (GNPs, r = 0.9760; M-GNPs, r = 0.9712). CONCLUSIONS: Hence, it can be concluded that, development of GNPs and M-GNPs will pave the way for reticuloendothelial system uptake of AZT; thus, achieving targeted delivery, selectivity and reduction in associated side effect reduction in acquired immuno defficiency syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...